Qiliqiangxin protects against anoxic injury in cardiac microvascular endothelial cells via NRG‐1/ErbB‐PI3K/Akt/mTOR pathway

نویسندگان

  • Jingfeng Wang
  • Jingmin Zhou
  • Yanyan Wang
  • Chunjie Yang
  • Mingqiang Fu
  • Jingjing Zhang
  • Xueting Han
  • Zhiming Li
  • Kai Hu
  • Junbo Ge
چکیده

Cardiac microvascular endothelial cells (CMECs) are important angiogenic components and are injured rapidly after cardiac ischaemia and anoxia. Cardioprotective effects of Qiliqiangxin (QL), a traditional Chinese medicine, have been displayed recently. This study aims to investigate whether QL could protect CMECs against anoxic injury and to explore related signalling mechanisms. CMECs were successfully cultured from Sprague-Dawley rats and exposed to anoxia for 12 hrs in the absence and presence of QL. Cell migration assay and capillary-like tube formation assay on Matrigel were performed, and cell apoptosis was determined by TUNEL assay and caspase-3 activity. Neuregulin-1 (NRG-1) siRNA and LY294002 were administrated to block NRG-1/ErbB and PI3K/Akt signalling, respectively. As a result, anoxia inhibited cell migration, capillary-like tube formation and angiogenesis, and increased cell apoptosis. QL significantly reversed these anoxia-induced injuries and up-regulated expressions of NRG-1, phospho-ErbB2, phospho-ErbB4, phospho-Akt, phospho-mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in CMECs, while NRG-1 knockdown abolished the protective effects of QL with suppressed NRG-1, phospho-ErbB2, phospho-ErbB4, phospho-Akt, phospho-mTOR, HIF-1α and VEGF expressions. Similarly, LY294002 interrupted the beneficial effects of QL with down-regulated phospho-Akt, phospho-mTOR, HIF-1α and VEGF expressions. However, it had no impact on NRG-1/ErbB signalling. Our data indicated that QL could attenuate anoxia-induced injuries in CMECs via NRG-1/ErbB signalling which was most probably dependent on PI3K/Akt/mTOR pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Neuregulin Promotes Incomplete Autophagy of Prostate Cancer Cells That Is Independent of mTOR Pathway Inhibition

BACKGROUND Growth factors activating the ErbB receptors have been described in prostate tumors. The androgen dependent prostate cancer cell line, LNCaP, expresses the ErbB-1, ErbB-2 and ErbB-3 receptor tyrosine kinases. Previously, it was demonstrated that NRG activates ErbB-2/ErbB-3 heterodimers to induce LNCaP cell death, whereas, EGF activates ErbB-1/ErbB-1 or ErbB-1/ErbB-2 dimers to induce ...

متن کامل

Sevoflurane Postconditioning Protects Rat Hearts against Ischemia-Reperfusion Injury via the Activation of PI3K/AKT/mTOR Signaling

Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway plays a key role in myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin (mTOR), a downstream target of PI3K/AKT signaling, is necessary and sufficient to protect the heart from I/R injury. Inhaled anesthetic sevoflurane is widely used in cardiac surgeries because its induction and recovery are faster and...

متن کامل

Endothelium-derived neuregulin protects the heart against ischemic injury.

BACKGROUND Removal of cardiac endothelial cells (EC) has been shown to produce significant detrimental effects on the function of adjacent cardiac myocytes, suggesting that EC play a critical role in autocrine/paracrine regulation of the heart. Despite this important observation, the mediators of the protective function of EC remain obscure. Neuregulin (NRG, a member of the epidermal growth fac...

متن کامل

Salidroside protects against hydrogen peroxide-induced injury in HUVECs via the regulation of REDD1 and mTOR activation.

Antioxidative therapy is considered an effective strategy for treating oxidative stress-induced apoptosis in cardiovascular diseases. Salidroside has been used as an antioxidative therapy for oxidative injury in cardiac diseases. However, the mechanism underlying its antioxidant effect is poorly understood. The present study aimed to investigate the pharmacological effects of salidroside on cul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2017